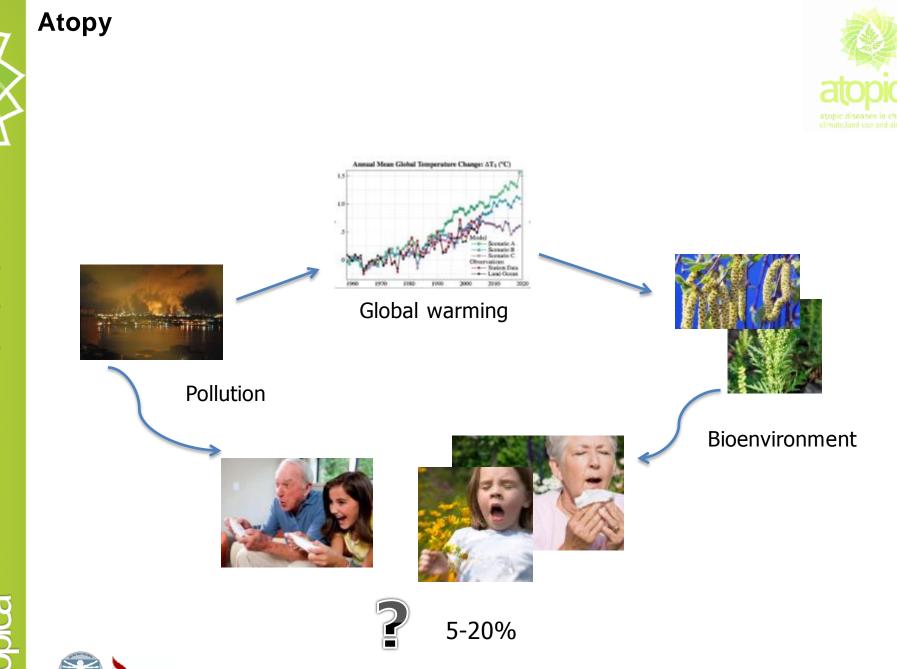
5-6.03.2015

Genomic profiles of young and aged ragweed allergic patients

atopic diseases in changing

climate, land use & air quality


an

(R)

Lazarević Dejan,CTGB

atopica is a project funded by the European Commission under the 7th FP

atopica®

Genes with variants associated Other mechanism than genetics: with atopy (Malacard):

• <u>IL4R</u>	RNASE3
HAVCR1	CYSLTR1
• <u>SPINK5</u>	• FCER2
• MS4A2	• MICU1
• PLA2G7	• IGES
• SELP	• IGHE
• SART1	• IL5
• <u>IL9</u>	LALBA
• LTC4S	• PRG2
• IL13	• IL13RA1
• CMA1	• SLC11A1
CYSLTR2	• <u>CCL17</u>
• TSLP	• CCL22
• EPX	• TBXA2R
• <u>CD14</u>	• CCL11
• IL4	• CCR3
<u></u>	• IL5RA
	• <u>IRF1</u>
	• <u>LTA</u>

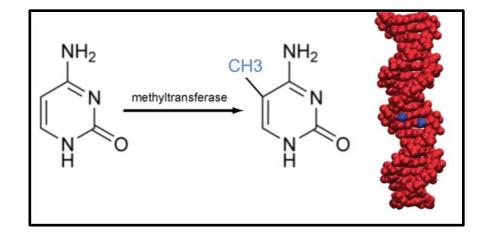
4%-10% of hereditability

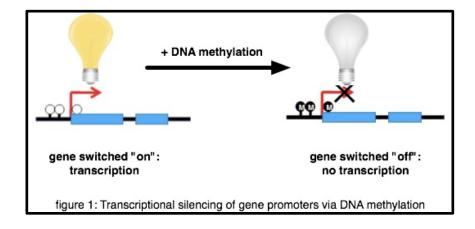
- Sudden rise in frequency of atopy among ٠ population
- Discrepancies of parental risk (FceR1-b)
- Some animal model suggest trasgenerational ٠ inheritance

Why we need to look more into epigenetics:

Epigenetics *involves genetic control by factors other than an individual's DNA sequence.*

- Shapes the physical structure of genome, creating a second layer of information
- Regulates which sets of genes are active or not, defining cell and phenotype identity
- Responds dynamically to environment stimuli , real time response
- Epigenetics+genetics at same DNA loci might provide better stratification between subjects
- If environmental pressure is present can be transmitted and amplified through generations but at the same time if selection pressure stop, epigenetically determined phenotype can be reverted to normal


atopica

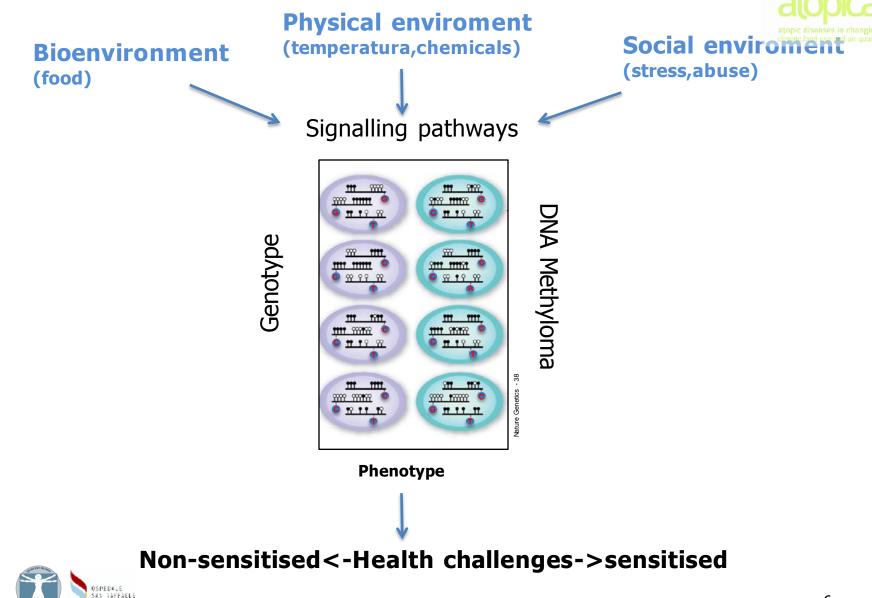


Epigenetic control :

- DNA Methylation
- Histone Modifications
- RNA-Associated Silencing

How DNA methylation works?

atopica



UNISR

WP3 -

atooic

Hypothesis: Adaptive response of the genome during the life

Aim of project

Targets:

- investigate the role of DNA methylation in shaping the allergic response in the two populations of different age
- · identification of predictive biomarkers
- Collection of 3.2k blood/DNA samples
 - establishment of a Biobank (UULM, CHS)
- Whole genome methylation analysis:
 - 120 subjects from CHS pediatric cohort(Slavonia region)
 - 120 subjects form UULM elderly cohort(Ulm University)
- Bioinformatic analysis:
 - **DMR identification** between sensitized and healthy subjects

8

methylation analysis

Methods to study DNA methylation

Array based:

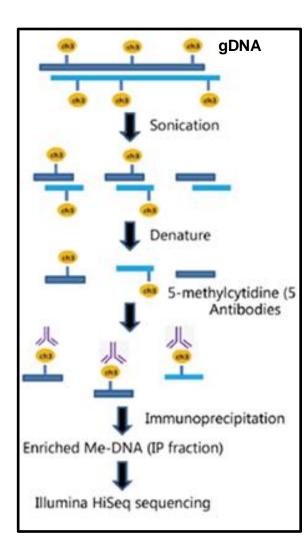
DNA methylation arrays (Human Methylation 27K, 450K bead chip)

Sequenced based:

- Sodium bisulfite conversion:
 - WGBS-Seq
 - RRBS-Seq
 - Sequence-specific enzyme digestion

Enrichment methods:

- MeDIP-seq (anti-5mC Ab)
- MBD-seq (methyl-binding protein)



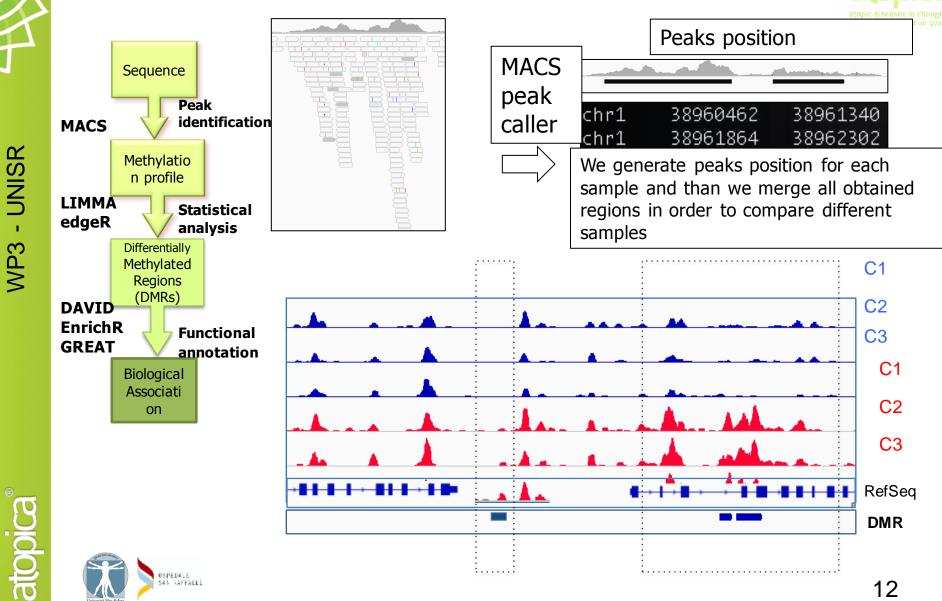
MeDIP:

Advantage:

- Genome-wide ,high resolution
- Fast, cost effective, high-troughput
- Discriminate 5-mC from 5-hmC
- High correlation with BS-Seq data
- Low input DNA needed

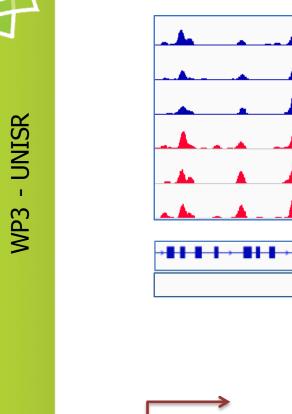
Disadvantage:

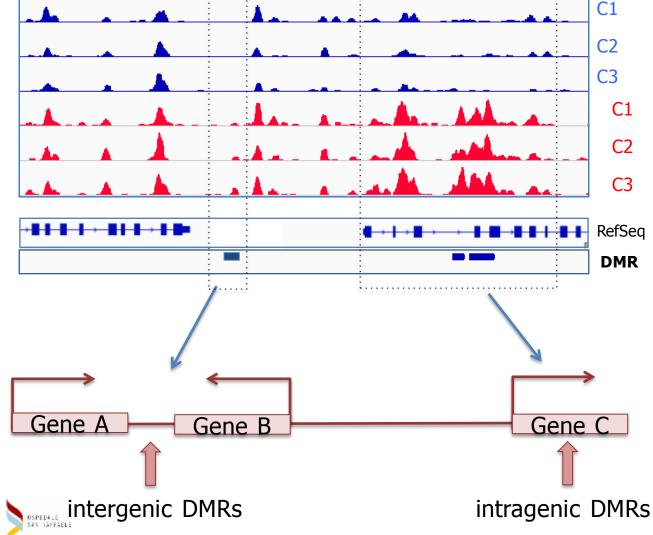
- Non single base resolution
- Laborious and time consuming validation process



DMR identification and gene association

.





atopica

DMR identification and gene association

Methylation analysis: CHS cohort

Selection criteria

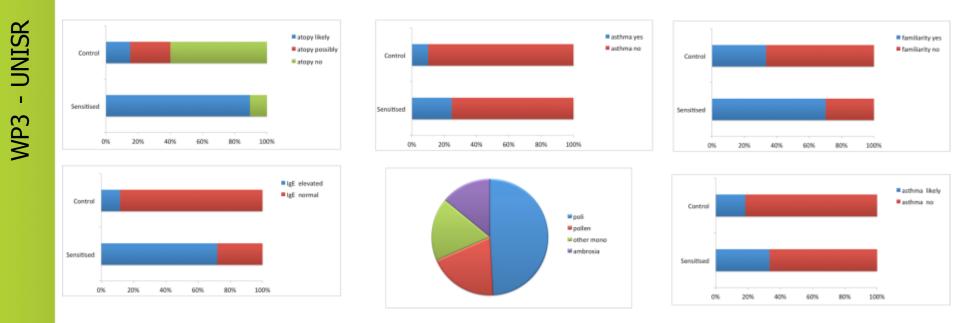
Slavonia children selected for methylation analysis; age: 4 to 10 years.

Data available:

- skin prick test response (SPT)
 Birch Dog Hair
 Hazel cat dander
 Grasses mix D. Pterossynus
 Ragweed Cladosporium
- Clinical data (questionnaire)
- IgE levels

Groups were defined by SPT response:

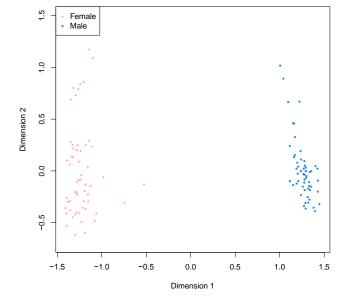
Sensitized: SPT positive to any allergen **Controls**: SPT negative to any allergen

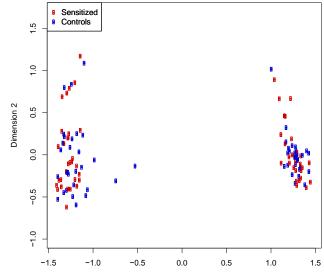


Association between clinical data and prick test

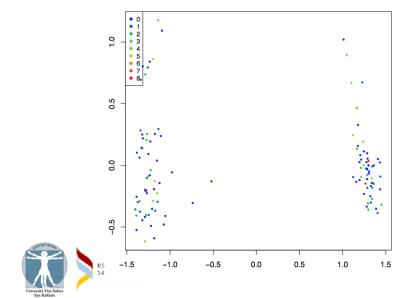
Groups were defined by SPT response:

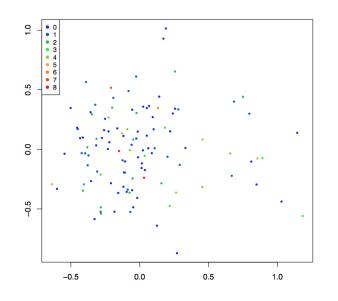
Sensitized: SPT positive to any allergen **Controls**: SPT negative to any allergen





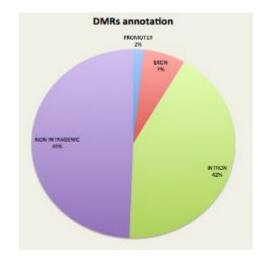
Methylation analysis: CHS cohort


MDS-positive skin prick test



Dimension 1

MDS – Number of positive skin prick tests


õ

E

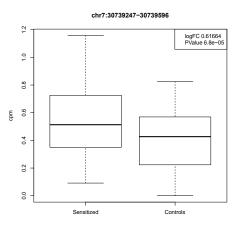
Methylation analysis: CHS cohort

- We compared methylation profiles of sensitized patients with those of Not Sensitized patients.
- We applied a **GLM using sex, pool and age information as covariates**.
- We selected **587 DMRs** with nominal p-value < 0.0005
 - Hypermethylated in Sensitized: 296 DMRs
 - Hypomethylated in Sensitized: 291 DMRs
- DMRs have been associated to **814 genes**.
- Distribution of DMR along a genome:
 - Promoter-2%
 - Exon-7%
 - Intron-42%
 - Intergenic-49%

atopica

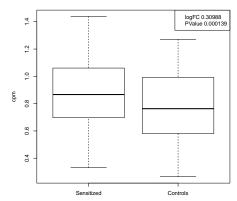
UNISR

WP3 -


Methylation analysis: CHS cohort DMR-associated genes: insights

CRHR2

- Corticotropin-releasing hormone (CRH)
 receptor 2
- CHR is the central regulating hormone of the hypothalamic-pituitary-adrenal axis.
- Already related to stress and asthma and bronchodilator response


IL4-R

- ILR4 can bind interleukin 4 and interleukin 13 to regulate IgE production.
- promote differentiation of Th2 cells.
- inhibit IL4-mediated cell proliferation and IL5 upregulation by T-cells.

chr16:27314777-27315117

Association of DMR with known genes linked with atopy:

- Intersection with GWAS data
- AUTS2
- BCAS3
- C11orf74
- CNTN5
- CNTNAP5
- CSMD1
- CTNNA3
- EDIL3
- EPS15
- IRX1
- LTBP1

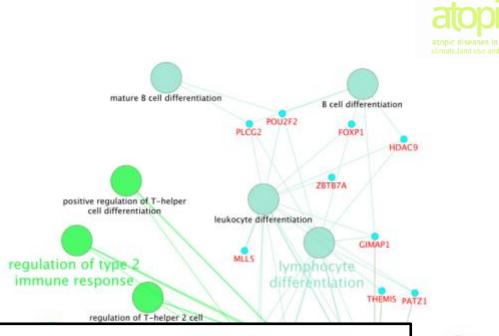
UNISR

1

WP3

atopic

- NPY
- RAB6B
- TENM1
- TENM2
- THEMIS
- XKR6
- Intersection with Malacards associated genes
- CYSLTR2
- FNDC3A
- IL4R
- SART1



Pathway analysis:

In sensitized subjects differential methylation affects relevant pathways related to:

- **immune system regulation** (Th₂ cell differentiation, B cell differentiation)
- **signaling and cell adhesion** (cadherin binding, B cell receptor and integrin-mediated signaling pathways)

Epigenomic analysis of primary human T cells reveals enhancers associated with Th_memory cell differentiation and asthma susceptibility Grégory Seumois, et al. Nature immunology VOLUME 15,2014

regulation of T cell activation CFBP2 positive regulation of lymphocyte activation NCOR2

> positive regulation of T cell activation

E813

CD274

TAC1

lymphocyte costimulation

FYN

Methylation analysis: Ulm cohort

Methylation analysis: Ulm cohort

Samples were collected by Ulm hospital (center 1) and selected for methylation analysis. age: 60 to 80.

Allergens tested:

Trees	Birch
house dust mite I/II	ambrosia ALK / Bencard/HAL
Cats	nuts
Mugworth	celery
	Melon

Groups were defined by SPT response:

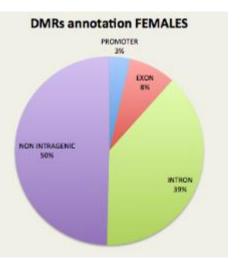
- Sensitized: SPT positive to any allergen
- **Controls**: SPT negative to any allergen

(NB: different method of evaluation of skin prick test results between ULM and CHS)

Sensitized patients in **males and females** separately.

Diolo

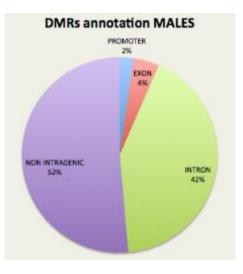
Methylation analysis: Ulm cohort



To identify DMRs we applied a **GLM(general linear model)using pool and age** information as covariates

Summary:

FEMALES


22 DMRs with FDR < 0.1252 DMRs with P.value < 0.0001DMRs have been associated to 364 genes.

MALES

8 DMRs with FDR < 0.1217 DMRs with P.value < 0.0001DMRs have been associated to 308 genes.

atopica

Association of DMR with known genes :

F;22 DMRs associated to 29 genes:

- CCNA1
- CCNT1
- CD84, Leucocyte differentiation antigen CD84
- CNTNAP2
- COMMD1
- DEFB107A
- FAM161A
- GALR1
- GPR63
- IL33, Interleukin 33
- IRF2, Interferon regulatory factor 2
- KATNB1
- LOC728175
- MBP, Myelin basic protein
- OR8D1
- PAPOLA
- PEX2
- POMT1, Protein-O-Mannosyltransferase 1
- PPP4R4
- R3HCC1L
- SCAI
- SERTM1
- SLC24A3
- SLC6A16
- TPD52L3
- TTC13
- UFL1
- VRK1

M;8 DMRs associated to 10 genes:

- DENND1A
- DTX2P1-UPK3BP1-PMS2P11
- FLJ31104
- IL6ST, Interleukin 6 signal transducer
- KIR2DS3, Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3
- KIR2DS5, Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5
- LINC00620
- MCTP2
- USP17L30
- ZNF726

atoolo

Pathway analysis:

males GO Biological process

Index	Name	P-
1	positive regulation of inflammatory response (GO:0050729)	0.005714
2	positive regulation of tyrosine phosphorylation of Stat3 protein (GO:0042517)	0.005714
3	positive regulation of adaptive immune response (GO:0002821)	0.006232
4	positive regulation of osteoblast differentiation (GO:0045669)	0.006750
5	regulation of cytokine-mediated signaling pathway (GO:0001959)	0.006750
6	positive regulation of anti-apoptosis (GO:0045768)	0.007785
7	positive regulation of T cell proliferation (GO:0042102)	0.009337

GO Molecular function

Index	Name	P- 🔒 value
1	MHC class I receptor activity (GO:0032393)	0.006008
2	cytokine receptor activity (GO:0004896)	0.01375
3	transmembrane receptor activity (GO:0004888)	0.01408
4	hematopoietin/interferon-class (D200-domain) cytokine receptor binding (GO:0005126)	0.01550
5	growth factor binding (GO:0019838)	0.02180
6	receptor activity (GO:0004872)	0.02262
7	cytokine binding (GO:0019955)	0.02633
8	phospholipid binding (GO:0005543)	0.02702
9	signal transducer activity (GO:0004871)	0.03922
10	calcium ion binding (GO:0005509)	0.04465

PEDALE AFFAELE

females MGI Mammalian Phenotype

03/03/15 16:3

MP0001790_abnormal_immune_system_	
MP0008872_abnormal_physiological_respon_	
MP0000685_abnormal_immune_system_	
MP0002396_abnormal_hematopoietic_system_	
MP0002168_other_aberrant_phenotype_	
MP0005501_ahnormal_skin_physiology_	
MP0003878_abnormal_car_physiology_	
MP0001545_ahnormal_hematopoietic_system_	
MP0002160_abnormal_reproductive_system_	

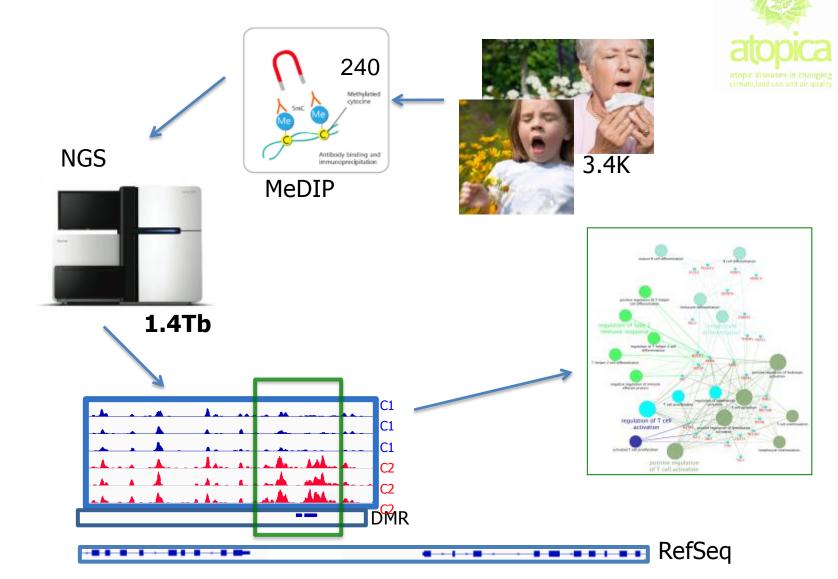
1P0001657_abnormal_induced_morbidity/mo_

Õ

E

Conclusions:

- We present the whole genome methylation dataset made on large scale, starting from a patients with atopy
- Preliminary results underline a differential methylation region associated with genes involved immunological pathways
- Data we obtained strongly suggest important role of epigenetics in atopy pathogenesis, before onset of disease and during
- Taking together our data and data obtained by climatic/pollen model we can hypothesize that a number of the patients will arise at least for the next one –two generations independent of air quality


UNISR

1

WP3

atopica®

Summary

Elia Stupka

Francesca Giannese, giannese.francesca@hsr.it Giulia Barbiera barbiera.giulia@hsr.it Davide Cittaro, cittaro.davide@hsr.it Arianna Rezzonico, arianna.rezz@gmail.com Eleonora Capitolo,capitolo.eleonora@gmail.com Valeria Rossella rossella.valeria@hsr.it Silvia Bonfiglio bonfiglio.silvia@hsr.it

<u>Children's Hospital SREBRNJAK.</u> <u>Croatia</u>: *Mirjana Turkalj. Davor Plavec. Ivana Cosic*

<u>Universitatet klinikum Ulm. Ulm</u> (Germany): Christiane Pfeiffer